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1. INTRODUCTION

At least four types of cellular structures, strongly
differing in their scale, can be identified with certainty
on the solar surface and attributed to the phenomenon
of thermal convection, i.e., granules, mesogranules,
supergranules, and giant cells. They may not exhaust
all existing types: in particular, there are indications
for the presence of “large mesogranules”, i.e., cells
intermediate in their scale between supergranules and
mesogranules (Getling and Buchnev, 2010). This mul�
tiscale structure is an important feature of solar con�
vection, which should be taken into account in study�
ing the dynamics of magnetic fields. It has not yet
received a convincing explanation, and an adequate
hydrodynamic description must be given to both the
spatial structure of the flows and the factors responsi�
ble for its development.

As is known, convection cells that are not large in
their plan size compared to the full thickness of the
convecting�fluid layer should also be vertically local�
ized in a relatively thin portion of this layer. This is
obviously possible if a certain sublayer (height interval)
where convection can develop due to an unstable tem�
perature stratification, is contiguous with another sub�
layer where the stratification is stable and exerts a
braking action on the convective motion (in this case,
the flow nevertheless penetrates into the stable region;
i.e., penetrative convection occurs). If, however, the

entire layer (from top to bottom) is convectively unsta�
ble, the localization of motion in a relatively thin sub�
layer is not such a trivial effect. The possibility of the
coexistence of small cells with larger ones, filling the
entire layer thickness, is even less obvious.

The aim of this study is to understand whether or
not the particularities of the static temperature strati�
fication of a fluid layer unstable at all heights can give
rise to a multiscale spatial spectrum of convection. It
can be naturally suggested that scale splitting could
result from sharp changes in the vertical entropy gradi�
ent (or the temperature gradient in the case of an
incompressible fluid) at some heights. Under the con�
ditions of the solar convection zone, there are some
prerequisites for manifestations of such an effect,
related to the enhanced instability of the sublayers of
partial ionization of hydrogen and helium. Indirect
indications for the possible scale splitting in such situ�
ations were found previously in linear problems
(Getling, 1975; Getling, 1980), and these expectations
were substantiated in part by nonlinear numerical
computations (Getling and Tikhomolov, 2007).

2. FORMULATION OF THE PROBLEM 
AND SOLUTION PROCEDURE

We investigate here possibilities of scale splitting in
the case where the static temperature gradient experi�
ences a sharp change at a certain height, by means of
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numerically simulating two�dimensional convection
flows in a plane horizontal incompressible�fluid layer
(of thickness h) heated from below. We assume that the
temperature difference between the bottom and top
surfaces of the layer is ΔT and specify the temperature
dependence of the thermal diffusivity in the form
χ(T) = 1 + aT + bTn. We choose parameters a, b, and
n in such a way that temperature varies little (by δT �
ΔT) across the main portion of the layer of thickness
h – Δh, Δh � h (sublayer 1); the most part of the tem�
perature difference, ΔT – δT, corresponding to sub�
layer 2 with small thickness Δh near the upper surface
(Fig. 1).

The horizontal size of our computational domain is
5πh = 15.7h. The no�slip impermeability conditions
are specified at the bottom and side boundaries of the
domain. The top boundary may be either rigid or
stress�free. The temperature is fixed at the horizontal
boundaries, and the heat flux vanishes at the sidewalls.
The flow is initialized by introducing a random ther�
mal perturbation at a certain height within the upper
sublayer.

The process is characterized by nondimensional
parameters termed the Rayleigh and Prandtl numbers

R αgΔTh3

νχ
����������������,  P ν

χ
��,= =

where α is the volumetric coefficient of thermal
expansion of the fluid; ν and χ are its kinematic viscos�
ity and thermal diffusivity (the value of the latter being
taken at the upper boundary of the layer); and g is the
gravitational acceleration. We also introduce the
“local” Rayleigh numbers R1 and R2 for the lower
(first) and upper (second) sublayers, respectively,
according to their thicknesses and temperature differ�
ences. In an extended Boussinesq approximation,
which admits thermal�diffusivity variations, we solve
the system of Navier–Stokes equations, written for
the stream function and vorticity, using a finite�differ�
ence technique. We employ a conservative scheme of
the second�order accuracy in the spatial coordinates
and of the first order in time (Mazhorova and Popov,
1980). Calculations are carried out on a nonuniform
grid, which is finer near the top and bottom layer
boundaries. The total number of nodes is 1024 × 51.

In the regimes studied, the critical Rayleigh num�
ber, which was determined in the process of simulation
of convection, was in the range Rc = (4 – 6) × 105 for
the layer with a rigid (no�slip) upper boundary and
equal to Rc ≈ 3.8 × 106 for the layer with a free�slip
upper surface; the Prandtl number in our calculations
was in the range P = 0.01–10. A temperature profile of
the form of interest was obtained at b = 600, a = 10–
20, and n = 10–20; R1 > R2 for the considered static
temperature profile. The qualitative features of the
results turned out to be little sensitive to the choice of
parameters a and n in the above�mentioned ranges.

3. RESULTS

If the upper horizontal boundary is rigid, then
motion starts developing in the form of small�scale
convection in the upper sublayer (2), for which the
conventionally defined local Rayleigh number is
smaller than for sublayer 1 and which is thus more sta�
ble according to formal criterion R2 < R1. Later, the
disturbances penetrate deeper and gradually involve
the entire layer depth. As a result, large�scale roll cells
emerge with a width of about the layer thickness, while
small�scale cells are observed both in the upper sub�
layer and near the lower layer boundary. Thus, in the
fluid layer stratified, on the whole, unstably, large cells
filling the entire layer depth coexist with smaller ones
localized in relatively thin sublayers (Fig. 2). The small
cells are especially pronounced above the contact sec�
tions of large rolls. We investigated the structure of the
developing flow using an ideal low�pass filter based on
a two�dimensional Fourier transform, which was
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Fig. 1. Static temperature profile (in nondimensional vari�
ables) for a = 20, b = 600, and n = 20.

Fig. 2. Coexistence of large cells and a smaller�scale flow at R ≈ 10Rc and P = 1 in the case of a rigid upper boundary; a = 20,
n = 20. Streamlines (contours of the stream function) are shown.
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Fig. 3. (a) Flow pattern (stream�function distribution) computed for R ≈ 10Rc and P = 10 and typical of the case of a rigid upper
boundary; (b) large�scale structures separated from this field using a low�pass filter; (c) small�scale structures obtained by sub�
tracting the large�scale component from the full stream�function field for P = 10; and (d) similar small�scale structures at P = 0.5.
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Fig. 4. Flow evolution in the case of a free upper boundary (R ≈ 1.5Rc and P = 1). Streamlines (contours of the stream function)
are shown for various times: (a) t = 0.07t

ν
, small�scale cells emerge near the upper layer boundary; (b) t = 0.09t

ν
, a “breaking”

effect of the small cells penetrating deep down on the large rolls with horizontal sizes considerably exceeding the scale optimum;
(c) t = 0.14t

ν
, flow pattern formed due to the penetration of small�scale cells deep into the layer; (d) t = 0.17t

ν
, a tendency towards

increases in the size of large�scale cells; emergence and development of small�scale structures in the upper sublayer is noticeable
in (c) and (d).

applied to the stream function to separate the large�
scale component of the flow. The subtraction of the
large�scale component from the full field separated the
small�scale flow component, thus visualizing small
cellular structures; the smaller the Prandtl number, the
more pronounced they are (Fig. 3).

In the case of a free upper boundary, the flow also
starts evolving in the upper sublayer, after which the
emerged small�scale structures penetrate deeper into
the layer, stimulating the development of a flow
throughout the layer. The cells in sublayer 1 tend to
grow in size; however, the small�scale structures
present in sublayer 2 control this process: as the hori�
zontal size of a large structure becomes considerably
larger than the layer thickness, the cells moving down
from the upper sublayer break this structure into two
portions (Fig. 4). In contrast to the case of a rigid
upper boundary, where the number of large rolls is

constant, the number of large�scale structures in the
layer with the free boundary varies between 8 and 16.
Analyses of the spectra obtained by the Fourier
decomposition of the stream function in the horizon�
tal coordinate have shown that harmonics with differ�
ent wavenumbers dominate at different heights. Figure
5 shows a set of flow spectra for the times t = 0.14t

ν
 and

0.17t
ν
 at R ≈ 1.5Rc, P = 1; here, t

ν
 is the time of viscous

dissipation on scale h. Harmonics with the wavenum�
bers k = 2.8 and 3.2 dominate in the bulk of the layer,
while a harmonic with k = 4 dominates in the upper
sublayer (the nondimensional form of the wavenum�
ber that we use corresponds to the wavelength mea�
sured in units of h). The sublayers where the small cells
are located vary their thicknesses and do not coincide
with sublayers 1 and 2, specified by the static vertical
temperature profile. In contrast to the case of a rigid
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upper boundary, the small�scale structures are only
located in the upper portion of the layer.

A consideration of the spectrum of the stream
function averaged over the layer thickness has shown
that the amplitudes of the harmonics in the case of a
rigid upper boundary remain virtually unchanged, and
the same harmonic always dominates. A qualitatively
different situation takes place if the upper boundary is
free. In this case, both the spatial pattern of the flow
and the spectra are highly variant, and the amplitudes
of different harmonics at a given height and their ratios
fluctuate so that harmonics with different wavenum�
bers dominate at different times. The enhancement of
the small�scale component is frequently accompanied

by the weakening of the large�scale component and
vice versa: a type of intermittency is observed (Fig. 6).

4. CONCLUSIONS AND DISCUSSION

Clearly, the simplified model considered here can�
not offer a realistic description of solar convection, the
structure of which depends on a multitude of factors,
such as the density difference across the convection
zone, the complex thermal stratification, the complex
equation of the state of the matter (related to the vari�
able ionization degree), radiative heat exchange, etc.
Nevertheless, such models are instructive in terms of
evaluating the possible role of various factors in the
formation of the real pattern.

In this case, we can see that the stratification due to
the variable thermal diffusivity, if the static tempera�
ture profile has a sharp kink, can give rise to the devel�
opment of small�scale flows and, on the whole, to the
splitting of convection scales. In the case of two rigid
boundaries, small�scale cells are localized in both the
upper and bottom boundary sublayers. However,
small�scale cells are only observed near the upper
boundary, if it is free. Then, harmonics with different
wavenumbers dominate at different heights, and a type
of intermittency takes place: the enhancement of the
small�scale component is frequently accompanied by
the weakening of the large�scale component and vice
versa; on the whole, the flow pattern in the layer with
a free upper boundary is far from stationary. In both
cases, the thickness of the localization zones of small�
scale cells exceeds the thickness of the sublayer with a
sharp temperature change (Δh). Small cells are trans�
ferred by large�scale flows; if the upper boundary is
free, this process appears as the sinking of small cells.

An improvement of this model could likely make it
possible to comprehend the structure of solar convec�
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Fig. 5. Amplitude spectra of the stream function obtained in a run with a free upper boundary at R ≈ 1.5Rc and P = 1 for the times
t =0.14t
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Fig. 6. Time variation in the amplitudes of harmonics with
wavenumbers k = 2.8 and 4 in a run with a free upper
boundary and R ≈ 1.5Rc, P = 1.
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tion. In particular, a step in this direction could be the
consideration of a model in which the upper boundary
is replaced with a stable sublayer overlying unstable
sublayer 2.

ACKNOWLEDGMENTS

This work was supported by the Russian Founda�
tion for Basic Research, project no. 12�02�00792�a.

REFERENCES

Getling, A.V., Convective motion concentration at the
boundaries of a horizontal fluid layer with inhomoge�
neous unstable temperature gradient along the height,
Fluid Dyn. 1976, vol. 10, pp. 745–750.

Getling, A.V., Scales of convective flows in a horizontal
layer with radiative transfer, Izv., Atmosph. Oceanic
Phys., 1980, vol. 16, no. 5, pp. 363–365.

Getling, A.V. and Buchnev, A.A., Some structural features
of the convective�velocity field in the solar photo�
sphere, Astron. Rep., 2010, vol. 54, pp. 254–259.

Getling, A.V. and Tikhomolov, E.M., Scale splitting in solar
convection, Trudy XI Pulkovskoi mezhdunarodnoi kon�
ferentsii po fizike Solntsa (Proc. 11th Pulkovo Int. Conf.
on Solar Physics), Pulkovo, 2007, pp. 109–112.

Mazhorova, O.S. and Popov, Yu.P., Methods for the numer�
ical solution of the Navier–Stokes equations, USSR
Comput. Math. Math. Phys., 1980, vol. 20, no. 4,
pp. 202–217.

Translated by A. Getling


