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Abstract

The coexistence of motions on various scales is a remarkable feature of solar convection, which should be taken into account in anal-
yses of the dynamics of magnetic fields. Therefore, it is important to investigate the factors responsible for the observed multiscale struc-
ture of solar convection. In this study, an attempt is made to understand how the scales of convective motions are affected by the
particularities of the static temperature stratification of a fluid layer. To this end, simple models are considered. The equations of
two-dimensional thermal convection are solved numerically for a plane horizontal fluid layer heated from below, in an extended Bous-
sinesq approximation that admits thermal-diffusivity variations. These variations specify the stratification of the layer. The static tem-
perature gradient in a thin sublayer near the upper surface of the layer is assumed to be many times larger than in the remainder of
the layer. In some cases, distributed heat sinks are assumed to produce a stably stratified region overlying the convective layer. Mani-
festations of the scale-splitting effect are noted, which depend on the boundary conditions and stratification; it becomes more pro-
nounced with the increase of the Rayleigh number. Small-scale convection cells are advected by larger-scale flows. In particular, the
phase trajectories of fluid particles indicate the presence of complex attractors, which reflect the multiscale structure of the flow. The
effect of the stably stratified upper sublayer on the flow scales is also considered.
� 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of solar magnetic fields depends crucially
on the structure of the velocity field in the convection zone.
In particular, the coexistence of convective motions on var-
ious scales is clearly reflected by the magnetic-field struc-
ture on the photospheric levels.

At least four types of cellular structures, strongly differ-
ing in their scale, can be identified with certainty on the solar
surface and attributed to the phenomenon of thermal con-
vection, viz., granules, mesogranules, supergranules and
giant cells. Moreover, Abramenko et al. (2012) reported
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the detection of mini-granular structures with spatial scales
below 600 km and a broad size distribution. This multiscale
structure is an important feature of solar convection, which
should be taken into account in studying the dynamics of
magnetic fields. It has not yet received a convincing explana-
tion, and an adequate hydrodynamic description must be
given to both the spatial structure of the flows and the fac-
tors responsible for its development.

It can naturally be expected that, if convection cells are
not large in their plan size compared to the full thickness of
the convecting fluid layer, they should also be vertically
localised (“suspended”) in a relatively thin portion of this
layer. This is obviously possible if a certain sublayer (height
interval) with a convectively unstable thermal stratification
is contiguous with another sublayer where the stratification
is stable and exerts a braking action on the convective
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motion. In this case, the flow nevertheless penetrates into
the stable region — penetrative convection occurs. If, how-
ever, the entire layer (from top to bottom) is convectively
unstable, the possibility for motion being localised in a rel-
atively thin sublayer is not so trivial. Such localisation can
most easily be achieved by introducing, e.g., sufficiently
strong temperature variations of viscosity (see, e.g.,
Stengel et al., 1982). At the same time, similar effects of
other factors remain little explored. Even less obvious is
the coexistence of small cells with larger ones, filling the
entire layer thickness. Such coexistence will here be referred
to as the scale-splitting effect.

Quite likely, scale splitting could result from sharp
changes in the static vertical entropy gradient (or the static
temperature gradient in the case of an incompressible fluid)
at some heights. Under the conditions of the solar convec-
tion zone, there are some prerequisites for this effect, tradi-
tionally attributed to the enhanced instability of the
sublayers of partial ionisation of hydrogen and helium.
In these sublayers, the specific heat of the plasma is
increased and the adiabatic temperature gradient accord-
ingly decreased, while the radiative gradient is increased.
This idea was put forward by Simon and Leighton (1964)
in the context of the observed coexistence of granulation
and supergranulation and then extended to mesogranula-
tion by November et al. (1981). It is typically assumed that
the zones of partial ionisation of neutral hydrogen, neutral
helium and singly ionised helium control the formation of
granules, mesogranules and supergranules, respectively.
The depths of location of these zones are suggested to
determine the characteristic sizes of these three sorts of
convection cells. The latter conjecture is, however, fairly
arbitrary from the standpoint of the theory of convection,
as we shall see below.

On the other hand, stratification effects are not the sole
candidate for the scale-splitting mechanism. Solar convec-
tion is violent, turbulent fluid motion with a complex spec-
trum, and hydrodynamic instabilities of some larger-scale
motion can produce secondary, smaller-scale flows. Con-
versely, Brummell et al. (1995) note possible self-organisa-
tion processes in turbulence (inverse energy cascades),
which can give rise to coherent structures. Cattaneo et al.
(2001) attribute the formation of mesogranules to the col-
lective interaction between the granules, leaving the effects
of stratifications beyond the scope of their study.

Although the structure of solar convection has long
been explored using numerical simulations, the scale-split-
ting effect has not yet received a convincing explanation. In
particular, DeRosa et al. (2002) simulate convection in a
thin shell and note the presence of various scales in the
velocity field; however, the large-scale flows computed in
that study are associated with global processes, while the
size of the smaller cells is controlled by the thickness of
the shell. These cells are not “suspended” near the outer
boundary of the shell. Kitiashvili et al. (2012) investigate
the multiscale flow dynamics of vortical structures but do
not reveal cellular structures.
Previously, Getling (1976, 1980) considered linear prob-
lems on convection in layers with near-surface jumps in the
static temperature gradient, from low values in the bulk to
high values in a boundary sublayer. Such a jump was
regarded as a model representation of the sharp jump in
the entropy gradient at depths of order 1 Mm below the
solar photosphere. In the framework of the model, indirect
indications for scale splitting were found. These expecta-
tions were substantiated in part by nonlinear numerical
computations (Getling and Tikhomolov, 2007). It proved,
however, that the tendency for convection cells to fill the
whole layer thickness is very strong, and small-scale,
near-surface convective motions develop only if the jump
is very sharp and the high-gradient sublayer is very thin.

We investigate here possibilities of scale splitting by
means of numerically simulating two-dimensional convec-
tive flows in the framework of similar simple models.
Although two-dimensional simulations have only limited
applicability to natural fluid-dynamic systems, they are still
of some interest, being fairly simple and well tractable
(Schmalzl et al., 2004); simulations of two-dimensional tur-
bulent convection in a density-stratified fluid layer by
Rogers et al. (2003) can be mentioned as an example.
Our simplified formulation of the problem appears to be
useful from the standpoint of evaluating the role of some
factors, taken alone, among those controlling the static
thermal stratification of the layer.
2. Formulation of the problem and numerical technique

Assume that a plane horizontal layer 0 < z < h of a vis-
cous, incompressible fluid is heated from below and con-
sider its finite segment 0 < x < L in which we shall
simulate two-dimensional (@=@y ¼ 0) convection flows.
Let the bottom and top boundaries be perfect thermal con-
ductors and let their temperatures be constant and equal to
T bot ¼ DT > 0 and T top ¼ 0, respectively. We also assume
that the sidewalls of the region are thermally insulated.
The no-slip impermeability conditions are specified at the
bottom and side boundaries of the domain. The top bound-
ary may be either rigid (no-slip) or stress-free.

We are interested in situations where the static temper-
ature varies little (by dT � DT ) across the main portion
of the layer, of thickness h� Dh;Dh� h (Sublayer 1),
while the most part of the temperature difference,
DT � dT , corresponds to Sublayer 2 with a small thickness
Dh, near the upper surface (Fig. 1). The kink near
z ¼ h� Dh in the temperature profile specified in this way
qualitatively resembles the transition (above depths of
order 1 Mm) from the bulk of the solar convection zone,
where the stratification is weekly superadiabatic, to the
strongly unstable subphotospheric layers. To obtain such
profiles, we assume the thermal diffusivity to be tempera-
ture-dependent:

vðT Þ ¼ 1þ aT þ bT n: ð1Þ



(a) (b)

Fig. 1. Static temperature profiles (in dimensionless variables): (a) monotonic profile for a ¼ 5; b ¼ 600; n ¼ 10; (b) nonmonotonic profile for
a ¼ 0:01; b ¼ 600; n ¼ 10; q0 ¼ �2; z0 ¼ 0:8.

O.V. Shcheritsa et al. / Advances in Space Research 55 (2015) 927–936 929
In some cases, we introduce heat sinks uniformly distrib-
uted over the region above a certain level z ¼ z0 located
in Sublayer 2 to obtain temperature profiles with a mini-
mum at a certain height, so that a stable Sublayer 3 be
located above Sublayer 2 (see below). This sublayer is con-
sidered to play the role of a “soft boundary,” or “penetra-
ble lid,” as do the stable layers located immediately above
the temperature minimum in the solar atmosphere. We
shall give no attention to the flow structure within this
sublayer.

To describe the dynamics of convection, we use an
extended Boussinesq approximation, which admits ther-
mal-diffusivity variations (for a discussion of different ver-
sions of the Boussinesq approximation, see, e.g., Getling,
1998). If the layer thickness h is chosen as the unit length,
DT as the unit temperature and the characteristic time of
viscous momentum transport, sm ¼ h2=m, as the unit time
(m being the kinematic viscosity), the governing equations
assume the following dimensionless form:

@v

@t
þ ðv � rÞv ¼ �r-þ ẑ

R
P
ðT � T sÞ þ Dv; ð2Þ

@T
@t
þ v � rT ¼ 1

P
r � vðT Þ

vðT topÞ
rT ; ð3Þ

r � v ¼ 0; ð4Þ

here, ẑ is the z–directed unit vector, T sðzÞ is the static tem-
perature distribution, vðT Þ is the thermal diffusivity, - is
the nondimensionalised pressure and

R ¼ agDTh3

mvðT topÞ
and P ¼ m

vðT topÞ

are the Rayleigh and Prandtl numbers, a being the volu-
metric coefficient of thermal expansion of the fluid and g

the gravitational acceleration.
For two-dimensional incompressible flows, the stream

function w and vorticity x specified by the equations

vx ¼
@w
@z
; vz ¼ �

@w
@x

; x ¼ � @2w
@x2
þ @

2w
@z2

� �
are variables convenient for constructing a computational
algorithm. We solve Eqs. (2)–(4) with properly chosen
boundary conditions using the standard procedure of split-
ting physical processes (Kovenya and Yanenko, 1981).
Specifically, we first employ a matrix algorithm
(Mazhorova and Popov, 1980, 1981) to determine the
velocity field from (2) written in terms of w and x; next,
we find the temperature distribution in the layer from (3).
We use a conservative scheme of the second-order accuracy
in the spatial coordinates and of the first-order accuracy in
time (Arakawa, 1966). Calculations are carried out on a
nonuniform grid, which is finer near the top and bottom
layer boundaries. The horizontal size of our computational
domain is L ¼ 5ph ¼ 15:7h, and the total number of nodes
is 1024� 51.

Most calculations were done for static temperature pro-
files specified by dependences (1) with
a ¼ 5� 20; b ¼ 600; n ¼ 10� 80, the temperature varying
monotonically in these cases (Fig. 1(a)). Alternatively, non-
monotonic profiles (Fig. 1(b)) were obtained by specifying
heat sinks uniformly distributed with a density�q (i.e., heat
sources with a negative density q) above the height z0, as the
solution of the problem

@

@z
vðT Þ @T

@z

� �
þ q ¼ 0; q ¼

q0 < 0; z > z0;

0; z < z0:

�

For the sake of comparisons, we also considered the
case where the static temperature profile of the form shown
in Fig. 1(a) was produced by specially chosen temperature-
dependent heat sources, with a constant thermal diffusivity
(1). It is understandable that not only the shape of the sta-
tic temperature profile (which is not known in the case of
the Sun) but also the dependence of the material properties
of the fluid on its state should affect the structure of the
flow. Therefore, our model with the heat sources and with-
out a temperature dependence of the thermal diffusivity,
i.e., with a constant Prandtl number, describes a quite dif-
ferent situation than the model with the temperature-
dependent thermal diffusivity. Accordingly, the two models



1 By a convection cell in a two-dimensional flow, a pair of neighbouring
rolls is meant.
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yield substantially different simulation results. In the con-
text of our attempts to find some resemblance between
the dynamics of the solar convection zone and our simula-
tions, the model with a fixed spatial distribution of heat
sources and a constant Prandtl number appears to be more
artificial than that with the temperature-dependent thermal
diffusivity. It is thus not surprising that the simulation
results for the former also appear to be less similar with
the observed pattern than for the latter (see the last para-
graph of Section 3.1).

In our simulations, the flow is initiated by introducing
random thermal perturbations at a certain height within
the upper sublayer.

3. Simulation results

3.1. Monotonic static temperature profiles

Some preliminary results of our simulations were
reported by Getling et al. (2013). Here, we substantially
extend the explored region of parameter space (in particu-
lar, to higher Rayleigh numbers) and discuss the results
more comprehensively. In particular, along with the Fou-
rier transform, we use the technique of phase trajectories
of fluid particles to analyse the flow structure.

For both the no-slip and stress-free boundary conditions
at the upper surface of the layer, the critical Rayleigh num-
ber Rc was determined in the process of simulation. In the
regimes studied, it lies in the range, roughly,
Rc ¼ 1:95� 106 � 3:8� 106 (depending on a; b and n) for a
rigid upper boundary and Rc ¼ 4� 105 � 1:8� 106 for a free
upper boundary; the Prandtl number in our calculations is
P ¼ 1. We present here our simulations for two degrees of
supercriticality, R ¼ 10Rc and R ¼ 55:5Rc. The qualitative
features of the results turn out to be little sensitive to the
choice of parameters a and n in the above-mentioned ranges.

We analyse the flow structure using the discrete Fourier
transform of the stream function with respect to the hori-
zontal coordinate x at given heights z. High-frequency har-
monics are present in the spectrum, whose amplitudes
amount to 5–16% of the amplitude of the fundamental
mode, depending on the parameters of the problem
(Fig. 2). To separate the small-scale component of the
velocity field and visualise the fine cellular structures pres-
ent in the flow, we use an ideal low-pass filter (Blahut,
1985) and subtract the obtained large-scale component
from the original field. This procedure proved to be effi-
cient in the case of the rigid upper boundary (Figs. 3 and
4). In the case of the free upper boundary, however, the
more complex appearance of the spectra made our
attempts of filtering unsuccessful.

If the upper horizontal boundary is rigid, motion starts
developing as small-scale convection in Sublayer 2. Later,
the disturbances penetrate deeper and gradually involve
the entire layer depth. As a result, large-scale convection
rolls emerge, with a width of about the layer thickness.
As this takes place, the small-scale flow in the upper
sublayer does not disappear and assumes the form of smal-
ler rolls with a size typically exceeding the sublayer thick-
ness. A flow of a similar small scale also develops near
the bottom layer boundary. It should be noted that, if
the temperature profile is linear (the classical Rayleigh–
Bénard problem), simulations at the same R and P do
not reveal small-scale structures. In moderately supercriti-
cal regimes, the small rolls are especially pronounced above
and below the contact sections of large rolls. As the Ray-
leigh number is increased, the small rolls occupy a progres-
sively wider region, and a tendency to the formation of two
layers of small-scale rolls is observed. Thus, in the fluid
layer stratified on the whole unstably, large convection
cells1 filling the entire layer depth coexist with smaller ones
localised in relatively thin sublayers (Figs. 3 and 4). The
scale-splitting effect is more pronounced at higher Rayleigh
numbers: the near-surface cells singled out by subtracting
the large-cell flow are smaller and more clear-cut at
R ¼ 55:5Rc (Fig. 4) than at R ¼ 10Rc (Fig. 3). It is worth
noting that their location is not directly controlled by the
thickness sublayer of the large static temperature gradient
(Sublayer 2 in Fig. 1(a)).

In the case of a free upper boundary, the flow also orig-
inates in the upper sublayer, after which the emerged small-
scale structures penetrate deeper into the layer, stimulating
the formation of a flow throughout the layer. The cells in
Sublayer 1 tend to grow in size; however, the small-scale
structures present in Sublayer 2 control this process: as
the horizontal size of a large structure becomes consider-
ably larger than the layer thickness, the cells moving down
from the upper sublayer break this structure into two por-
tions (Figs. 5 and 6). In contrast to the case of a rigid upper
boundary, where the number of large rolls is constant, the
number of large-scale structures now varies between 10 and
15.

The spectrum of the flow (Fig. 2(b), (d)) is now more
complex than in the case of the rigid upper boundary
(Fig. 2(a), (c)). Since the number of large structures is var-
iable, the fundamental mode is also time-dependent. Har-
monics with different wavenumbers dominate in the bulk
of the layer and in the upper sublayer. The enhancement
of the small-scale component frequently parallels with the
weakening of the large-scale component, and vice versa
— a sort of intermittency is observed. As this takes place,
the sublayers in which the cells are localised vary in their
thickness and do not coincide with the sublayers specified
by the static vertical temperature profile. In contrast to
the case of a rigid upper boundary, the small-scale struc-
tures are localised only in the upper part of the layer.

If the profile shown in Fig. 1(a) is produced by a heat-
source distribution, the flow pattern at P ¼ 1 is quite regu-
lar, represented by a single spectral mode and closely
resembles that typical of the classical Rayleigh–Bénard
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(c) (d)

Fig. 2. Fourier spectra of simulated convective flows (a ¼ 5; b ¼ 600; n ¼ 10; different curves in the same graph correspond to different heights z): (a) rigid
upper boundary, R ¼ 10Rc (Rc ¼ 1:95� 106); (b) free upper boundary, R ¼ 10Rc (Rc ¼ 1:8� 106); (c) rigid upper boundary, R ¼ 55Rc (Rc ¼ 1:95� 106);
(d) free upper boundary R ¼ 55Rc (Rc ¼ 1:8� 106).

Fig. 3. Convective flow computed for a rigid upper boundary and R ¼ 10Rc (Rc ¼ 1:95� 106), P ¼ 1; a ¼ 5; b ¼ 600; n ¼ 10, with large cells and a smaller-
scale flow coexisting: (a) streamlines (contours of the stream function); (b) large-scale structures separated from the flow using an ideal low-pass filter; (c)
small-scale structures obtained by subtracting the large-scale component from the full stream-function field. This flow pattern does not undergo qualitative
changes after t � 0:1, remaining weakly time-dependent (we recall that the time is measured in the units of the time of viscous momentum transport, sm).

Fig. 4. Same as in Fig. 3 but for R ¼ 55:5Rc This pattern has been formed by t � 0:05 and does not undergo qualitative changes at later times, although is
not quite stationary.
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Fig. 5. Flow evolution in the case of a free upper boundary, at R ¼ 10Rc (Rc ¼ 1:8� 106), P ¼ 1; a ¼ 5; b ¼ 600; n ¼ 10. Streamlines (contours of the
stream function) are shown for different times: (a) t ¼ 0:04, small-scale cells originating near the upper surface of the layer; (b) t ¼ 0:045, the “breaking”

effect of the small cells, penetrating into the layer depth, on those large rolls whose horizontal size considerably exceeds the scale optimum; (c) t ¼ 0:14, the
flow structure formed in the process of penetration of small cells deeper into the layer; (d) t ¼ 0:22, a tendency toward the expansion of large-scale cells.
The emergence and development of small-scale structures in the upper sublayer. The flow pattern does not undergo qualitative changes at later times.

Fig. 6. Same as in Fig. 5 but for R ¼ 55Rc and (a) t ¼ 0:006, (b) t ¼ 0:007, (c) t ¼ 0:008 and (d) t ¼ 0:076. The flow pattern does not undergo qualitative
changes at later times.
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convection, and no signs of a multiscale flow structure can
be found. (At high Prandtl numbers, the flow behaves in a
very complex manner and has a wide-band spectrum. A
highly disordered flow without characteristic features
(cells) of specific sizes can be observed.) Although the flow
dynamics deserves a careful analysis in this case, it does not
appear to be quite relevant to our subject. We plan to pres-
ent such an analysis elsewhere.

3.2. Nonmonotonic static temperature profile

The nonmonotonic static temperature profile shown in
Fig. 1(b) was created by combining a temperature-depen-
dent thermal diffusivity with distributed heat sinks. The
needed profiles were obtained at the following parameters:
a ¼ 0:01� 0:1; b ¼ 600; n ¼ 10� 20; q0 ¼ �2; z0 ¼ 0:8. In
the regimes studied, the Rayleigh number varied in the range
R ¼ 20 000–200000 and the Prandtl number was P ¼ 1.

The flows computed for the nonmonotonic profile are
much less ordered than in the case of the rigid or free upper
boundary. They are highly changeable, characterised by
permanently arising descending and ascending plumes,
and can on the whole be assigned to fairly developed
turbulence.

Convection was initiated by introducing a random per-
turbation of the static temperature profile at a certain
height. The dynamics of the flow is highly sensitive to
where the initial perturbations are introduced. For this rea-
son, special efforts are required to determine the critical
Rayleigh number. At this stage, our very crude estimates
based on the simulated regimes near the threshold of con-
vective instability yielded Rc � 13000.

Motion starts developing at the interface between Sub-
layers 2 and 3, after which small-scale structures penetrate
to deeper levels and stimulate the development of the flow
in the bulk of the layer (see Fig. 7 and especially Fig. 8).
Large-scale structures form, with a vertical size comparable
with the layer thickness and horizontal sizes exceeding it.
The number of large structures varies in the evolving flow
pattern. Fresh small-scale structures permanently originate
at the interface between the sublayers and either glide
deeper between two large structures or break a large struc-
ture into two parts, preventing it from increasing its hori-
zontal size (Figs. 7(b) and 8(b)). In the bulk of the layer,
local overheat or underheat zones emerge (see Fig. 7(c),
(e) and also Fig. 8(c), (e), where they are more
pronounced).

It can be seen from the Fourier transform of the stream
function (not presented here) that three or four modes (har-
monics) with incommensurate wavenumbers dominate in
the spectrum of a well-developed flow. Different modes
dominate at different times, so that determining the num-
ber of spatial scales present is not a simple task. Applying
numerical-homology techniques to the velocity field



Fig. 7. Flow structure in the case of the nonmonotonic static temperature profile, for R ¼ 20000 � 1:5Rc; P ¼ 1 and different times: (a) stream function at
t ¼ 0:21, small-scale structures penetrate deep into the layer; (b) stream function at t ¼ 0:42, developing small-scale structures either glide deep into the
layer or break a large structure into two parts; (c) temperature distribution at t ¼ 0:42 with local overheat and underheat zones present in the bulk of the
layer; (d) stream function at t ¼ 0:7, small-scale structures are transferred by the large ones; (e) temperature distribution at t ¼ 0:7 with local overheat and
underheat zones present in the bulk of the layer. The flow pattern does not undergo qualitative changes at later times.

Fig. 8. Same as in Fig. 7 but for R ¼ 200000 � 15Rc; P ¼ 1 and (a) t ¼ 0:12, (b, c) t ¼ 0:32, (d, e) t ¼ 0:8. The flow pattern does not undergo qualitative
changes at later times.
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(Krishan et al., 2007) confirms the coexistence of several
spatial scales although does not enable us to determine
the size and localisation of the structures.
3.3. Phase space and attractors

The complex structures developing in various flows can-
not always be classified and analysed using Fourier-trans-
form-based methods. To make the presence of various
flow scales more apparent, we constructed the trajectories
of fluid particles in an appropriately defined phase space,
ðz; vzÞ. Several hundred particles differing in their initial
position were used. In their motion, all these particles
repeatedly passed from one structure to another, and tran-
sitions between large structures and between a large and a
small structure — possibly with a subsequent return to the
large structure — could take place.

If the static temperature profile is monotonic, an attrac-
tor can be detected whose structure clearly demonstrates
the presence of different flow scales. In Fig. 9(a)), which
refers to the case of a rigid upper boundary, the trajectory
of only one particle is shown, others being quite similar.
The velocity vanishes near the upper and lower bound-
aries (z ¼ 0 and z ¼ 1) according to the no-slip condition,
and a passage of the trajectory from the positive to nega-
tive half-plane reflects a transition from ascending to
descending motion. Therefore, the large ellipses correspond
to the large structure and the small ellipses near z ¼ 0 and
z ¼ 1 represent the small-scale flows near the upper and
lower boundaries. If the upper boundary is free, small-
scale motions are localised only near this boundary
(Fig. 9(b)).

It can be found from Fig. 9(a) that, for R ¼ 10Rc and the
rigid upper boundary, the vertical size of the large struc-
tures is equal to the layer thickness h, the size of the small
structure being 0:18h near the lower boundary and 0:14h
near the upper boundary. Different scales of the small
structures can be due to different thermal diffusivities near
z ¼ 0 and z ¼ 1 : vðT botÞ ¼ 605, while vðT topÞ ¼ 1. In the
case of R ¼ 55Rc, the size of the small structures is 0:17h
near the lower boundary and 0:11h near the upper bound-
ary (Fig. 9(c)). If the upper boundary is free, the vertical
size of the small structures is 0:18h at R ¼ 10Rc

(Fig. 9(b)) and 0:11h at R ¼ 55Rc (Fig. 9(d)).



(a) (b)

(c) (d)

Fig. 9. Phase trajectories of a particle in space ðz; vzÞ; a ¼ 5; b ¼ 600; n ¼ 1: (a) rigid upper boundary, R ¼ 10Rc (Rc ¼ 1:95� 106); (b) free upper boundary,
R ¼ 10Rc (Rc ¼ 1:8� 106); (c) rigid upper boundary, R ¼ 55Rc (Rc ¼ 1:95� 106); (d) free upper boundary, R ¼ 55Rc (Rc ¼ 1:95� 106).

(a) (b)

(c) (d)

Fig. 10. Phase trajectories of different fluid particles in the problem with a nonmonotonic static temperature profile, ¼ 0:01; b ¼ 600; n ¼ 10: (a, b)
R ¼ 20000 � 1:5Rc; (c, d) R ¼ 200000 � 15Rc.
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Similar analyses were done for the case of the nonmon-
otonic static temperature profile. Various features in the
obtained trajectories can be seen in Fig. 10. The closed
(or nearly closed) loops of the trajectories located near
z ¼ 0 or z ¼ 1 (Fig. 10(a), (c) and (d)) evidence the presence
of small-scale structures near the lower or the upper layer
boundary. The trajectories exemplified in Fig. 10(b) and
(d) indicate the presence of small-scale structures in the
bulk of the layer. Thus, the coexistence of large-scale and
small-scale cells can be revealed in the problem with a non-
monotonic static temperature profile, and the small-scale
structures are distributed over the whole layer thickness
rather than localised in thin sublayers. They move through
the layer, being advected by the large-scale flow. It should
be noted that the spatial trajectories of the particles have
numerous nearly horizontal segments, which is reflected
by the discontinuities of the phase trajectories seen in
Fig. 10.

4. Conclusion

We see that the stratification due to the variable thermal
diffusivity, with a sharp kink in the static temperature pro-
file, can give rise to the development of small-scale flows
superposed onto larger-scale flows, i.e., on the whole, to
the splitting of convection scales. In the case of two rigid
boundaries, small-scale cells are localised in both the upper
and bottom boundary sublayers. However, small-scale cells
are observed only near the upper boundary if it is free. In
both cases, the thickness of the localisation zones of small-
scale cells does not coincide with the thickness of the sublay-
er with the sharp temperature change, Dh, and declines with
the Rayleigh number increasing. The small-scale structures
become more clear-cut at higher Rayleigh numbers. Small
cells are advected by large-scale flows; if the upper boundary
is free, this process appears as the sinking of small cells.

The flows computed for the nonmonotonic profile are
much less ordered than in the case of the rigid or free upper
boundary. They are highly changeable, characterised by
permanently arising descending and ascending plumes,
and can on the whole be assigned to fairly developed
turbulence.

The appearance of phase trajectories in the case of the
nonmonotonic profile also counts in favour of the small-
scale structures being transferred by the large-scale flow.
It is worth noting in this context that, as some observa-
tional data suggest, granules are advected by larger-scale
flows in the solar convection zone. Analyses of correlations
between the brightness variations at two points located not
far from each other suggest that granules may even repeat-
edly emerge on the solar surface, playing a relatively pas-
sive role in the convection dynamics (Getling, 2006).

Clearly, the simplified models considered here cannot
offer a realistic description of solar convection, the struc-
ture of which depends on a multitude of factors, such as
the density difference across the convection zone, the com-
plex thermal stratification, the complex equation of state of
the matter (related to the variable ionization degree), radi-
ative heat exchange, etc. Nevertheless, such models are
instructive in terms of evaluating the possible role of vari-
ous factors in the formation of the real pattern.
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