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The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated 
by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary 
sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a 
superposition of cellular structures with three different characteristic scales. In contrast to the largest 
convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are 
advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that 
observed on the Sun.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

This study was motivated by the necessity of comprehending 
the physical factors responsible for the complex spatial structure of 
solar convection. The magnetic fields in the solar convection zone 
are dynamically coupled with motions, and the formation of con-
vection patterns is of paramount importance to the dynamics of 
magnetic fields and, therefore, to the processes of solar activity. 
As is well known, cellular flow structures of at least three or four 
types can be identified with certainty on the solar surface and at-
tributed to the phenomenon of thermal convection, viz., granules, 
mesogranules (whose existence as a physical entity is debatable), 
supergranules and giant cells (see, in particular, [11,13], and refer-
ences therein). These different sorts of structures differ widely in 
their scale. Furthermore, Abramenko et al. [1] reported the detec-
tion of mini-granular structures with spatial scales below 600 km. 
The convective flow in the photospheric and subphotospheric lay-
ers is thus a superposition of these differently scaled cellular flows, 
so that smaller cells are transferred by the motions associated with 
the larger scales. This multiscale, hierarchical structure of the flow 
(or scale splitting) is an important feature of solar convection. It 
has not yet received a convincing explanation, and an adequate hy-
drodynamic description must be given to both the spatial structure 
of the flows and the factors responsible for its development.

The multiscale structure of solar convection can be revealed us-
ing various observational techniques. However, the power spectra 
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of the velocity field seem to definitely exhibit only two peaks, 
which correspond to granulation and supergranulation (see, e.g., 
[8]). The broadband character of the spectrum smears out the 
other peaks. Nevertheless, the structures forming no pronounced 
spectral peaks can be identified using other methods, such as lo-
cal correlation tracking (LCT), wavelet analyses, tracking the mo-
tion of supergranules and an LCT-based cork-motion-tracking tech-
nique very clearly visualising both supergranules and mesogran-
ules. A further discussion of the pros and cons concerning the 
existence of mesogranules is given by Rieutord and Rincon [13].

It is known that convection cells in various flows have typi-
cally comparable horizontal and vertical sizes. This suggests that 
convection structures of different types in the solar convection 
zone should occupy layers of different thicknesses. Since all these 
structures can be detected at the solar surface, it can readily be 
understood that they all (except the giant cells filling the whole 
convection-zone depth) are “suspended” near the upper boundary 
of the convection zone, while the lower boundaries of layers of 
different types are located at different depths.

As for hydrodynamic modelling, some “realistic” (or, as termed 
by Schüssler [14], “comprehensive”) simulations of solar convec-
tion (aimed at reproducing the physical processes involved in the 
solar convective phenomena as closely as possible), which are 
based on the MURaM code [18], demonstrate a gradual increase in 
the characteristic scale of the flow with depth [15]. According to 
such simulations, the surface velocity field does not demonstrate 
any multiscale structure, and only granular-sized cells are clearly 
noticeable in the computed patterns. Larger-scale structures can-
not be detected at the surface and at small depths; at most, they 
may be too weak to manifest themselves in advecting small-scale 

https://doi.org/10.1016/j.physleta.2018.01.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:A.Getling@mail.ru
https://doi.org/10.1016/j.physleta.2018.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2018.01.009&domain=pdf


640 O.V. Shcheritsa et al. / Physics Letters A 382 (2018) 639–645
Fig. 1. (a) Static χ(z) distribution and (b) static temperature profile Ts(z) corresponding to the law (1).
cells. This suggests that some physics responsible, e.g., for super-
granulation is not taken into account in the known versions of the 
“realistic” problems.

It is natural to believe that the structure of convection should 
generally be controlled by the particularities of the fluid-layer 
stratification. Our aim is to investigate the role of certain physical 
mechanisms that can give rise to a multiscale structure of con-
vection – first of all, by producing static temperature profiles of 
particular shapes in the fluid layer. At this stage of research, we do 
not pursue the aim of closely reproducing the physical conditions 
in the solar convection zone and the convection patterns actually 
present on the Sun but seek for physical factors capable of produc-
ing the scale-splitting effect.

Specifically, we consider here the effects of temperature-
dependent thermal diffusivity. We assume this quantity to vary 
in such a way that the static temperature gradient dTs/dz is small 
in the bulk of the layer but jumpwise changes to high absolute 
values in a thin sublayer near the top boundary of the layer. It is 
important that this gradient is negative at any height; therefore, 
the thermal stratification is everywhere convectively unstable. This 
means that the phenomenon of penetrative convection has nothing 
to do with the subject of our study. Such a thermal-gradient jump 
resembles (although does not reproduce) a partial-ionisation layer 
in the solar convection zone, where the enhanced specific heat 
reduces the adiabatic thermal gradient and the enhanced opacity 
increases the radiative thermal gradient. The convective instabil-
ity of such a layer is therefore especially high [17,12]. The most 
pronounced jump of the vertical entropy gradient due to partial 
ionisation is located at depths of order 1 Mm below the solar 
photosphere. Here, we do not claim to propose a model of the 
solar convection zone but merely consider the physical effects of 
a certain stratification peculiarity under idealised conditions, for 
an incompressible fluid. Not only may this problem be of help in 
seeking structure-forming factors for solar convection but it is also 
interesting from a purely hydrodynamic standpoint.

Linear problems of convective stability in layers with similar 
static temperature profiles were considered by Getling [3,4]. In 
the framework of the incompressible-fluid models, indirect evi-
dence for possible scale splitting was detected. The development 
of small-scale convective motions near the surface of the layer was 
found to require very sharp gradient jumps and very thin high-
gradient sublayers. These expectations were partially substantiated 
by two-dimensional nonlinear numerical simulations of convec-
tion [7]. Recently, we studied the two-dimensional problem more 
extensively [6,16].
Here, we present the results of our simulations of three-
dimensional convection under conditions similar to those assumed 
in [16] in terms of the special form of the temperature depen-
dence of thermal diffusivity. We shall demonstrate that, even in 
the framework of a model based on an extended Boussinesq ap-
proximation, variable thermal diffusivity can produce a multiscale 
flow in which at least three cell types are present.

Our present study is hydrodynamic rather than astrophysical. 
Further steps toward adequately describing the flow structure in 
the solar convection zone should, in our opinion, include the con-
sideration of different structure-forming processes in parallel with 
successively taking into account more physics involved.

2. Formulation of the problem and numerical technique

We consider a rectangular box [0, Lx] × [0, L y] × [0, h] of a 
plane horizontal layer of a viscous, incompressible fluid (in our 
computations described here, Lx = L y = 15h). Let the bottom and 
the top boundary of the layer to be perfect thermal conductors, 
whose temperatures are maintained constant and equal to Tbot ≡
�T > 0 and T top = 0, respectively. Also let the sidewalls of the re-
gion be thermally insulated. We specify the no-slip impermeability 
conditions at the bottom and side boundaries of the region. The 
top boundary is also assumed to be rigid.

We choose the temperature dependence of thermal diffusivity 
in the form

χ(T ) = 1 + 5T + 600T 10, (1)

with χ(T top)/χ(Tbot) = 1/606; from here on, we use �T as the 
unit temperature and the layer thickness h as the unit length. In 
these dimensionless variables, the distributions of χ(z) and T (z)
for a motionless fluid due to the law (1) are shown in Figs. 1a 
and 1b, respectively. The static temperature Ts varies little (by a di-
mensional quantity δT � �T ) across the main portion of the layer 
(Sublayer 1) of a dimensional thickness h − �h, where �h � h, 
while the most part of the temperature difference, �T − δT , cor-
responds to Sublayer 2 with a small thickness �h, near the upper 
surface. The kink near z = h − �h in the temperature profile spec-
ified in this way qualitatively resembles (although does not repro-
duce) the transition from the bulk of the solar convection zone, 
where the stratification is weekly superadiabatic, to the overlying 
strongly unstable layer with a depth of order 1 Mm.

We use an extended Boussinesq approximation, which admits 
thermal-diffusivity variations (see, e.g., [5], for a discussion of dif-
ferent versions of this approximation). If, in addition to the above-
specified variables, we choose the characteristic time of viscous 
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momentum transport τν = h2/ν as the unit time (ν being the 
kinematic viscosity), the governing equations assume the follow-
ing dimensionless form:

∂v

∂t
+ (v·∇)v = −∇� + ẑ

Ra

Pr
(T − Ts) + ∇2v, (2)

∂T

∂t
+ v·∇ T = 1

Pr
∇ · χ(T )

χ(T top)
∇ T , (3)

∇·v = 0. (4)

Here, t is the time, x, y, z are Cartesian coordinates, v is the ve-
locity vector, � is the pressure, T is the temperature, Ts(z) is the 
static temperature distribution, ẑ = (0, 0, 1) and

Ra = αg�T h3

νχ(T top)
and Pr = ν

χ(T top)

are the Rayleigh and Prandtl numbers, α being the volumetric co-
efficient of thermal expansion of the fluid and g the gravitational 
acceleration. The boundary conditions can be written in the fol-
lowing form:

v|bot = v|top = v|side = 0,

T |bot = 1, T |top = 0,
∂T

∂n

∣∣∣∣
side

= 0, (5)

where the subscript “side” refers to the side boundaries of the box 
and n is the vector normal to a side boundary.

To solve the Navier–Stokes equations, we use the known Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE, see [2]) of a 
predictor–corrector class based on staggered grids, modified by 
Kolmychkov et al. [9,10]. In essence, it replaces the incompressibil-
ity equation with a Poisson equation for pressure. First, a predictor 
for velocity is calculated from the equation of motion at a current 
time layer. Next, a pressure corrector is found and used to cor-
rect the velocity field so as to ensure incompressibity, after which 
the temperature field is determined from the thermal-conduction 
equation. The spatial approximation of the equations is chosen 
based on the conservativeness requirement; it has a second-order 
approximation inside the domain and a first-order approximation 
at the boundary. An implicit conservative finite-difference scheme 
is constructed using a finite-volume method. Our computational 
grid is uniform and consists of 256 × 256 × 31 points. (We also 
used finer grids in tentative runs; they took much more time but 
gave very similar results. The ultimately chosen grid offers a rea-
sonable compromise between the computational-time consump-
tion and the accuracy achieved.) The time step of computations 
is τ = 10−2τν .

Initially, the fluid is motionless. The flow originates from ran-
dom temperature perturbations; to reduce the time needed to 
achieve a quasi-steady state, we introduce them at a certain height 
inside Sublayer 2, which is convectively most unstable because of 
the high static-temperature gradient.

3. Simulation results

3.1. Qualitative description

We consider here a representative computational run for which 
Ra = 1.5 × 108 ≈ 37.5 Rac and Pr = 1, where the critical Rayleigh 
number is Rac ≈ 4 × 106 (it was determined in the course of sim-
ulations as the Ra value at which the temperature profile begins 
departing from its static shape). The run lasted until t = 170τν , or 
17000τ . The flow starts developing in Sublayer 2 and gradually in-
volves the whole layer in motion. By time t ≈ 80τν , it reaches a 
quasi-steady state of full development, with slow variations in the 
structure of the flow and with its almost constant kinetic energy.

Figs. 2a–2c show the distributions of the vertical velocity com-
ponent over horizontal sections of the computational domain at 
three levels and time t = 170τν , and Figs. 2d, 2f, 2g represent the 
temperature distributions in the same sections. The large cellular 
structures (especially clearly visible in Fig. 2d) exhibit, during some 
time interval, a tendency of increasing their sizes, with slight de-
formations and drift. They gradually fill the entire depth of the 
layer, and their growth virtually terminates by times t ≈ 65τν . 
We designate these structures as the first-scale cells. In the well-
developed convection pattern, a multitude of small features are 
observed at levels slightly below the upper layer boundary. They 
move following their own laws and approaching the borders of 
the large structures. These third-scale cells emerge over the entire 
area of each first-scale cell. Cells of an intermediate, second scale
are also present; they can best be seen in enlarged images of the 
temperature field (Fig. 3). As we shall demonstrate below (in Sec-
tions 3.2 and 3.3), this scale hierarchy of structures can be made 
most distinct by applying smoothing and spectral-processing tech-
niques.

The temperature variations over the horizontal section z = 0.97
(see Fig. 2d) are within the range Tmax − Tmin = 0.98. The bor-
ders of the first-scale structures coincide in their location with the 
strongest downdrafts. Similar cold downdrafts related to the struc-
tures of smaller scales reach smaller depths (see Fig. 2e), and the 
usual order-of-magnitude agreement between the horizontal and 
vertical sizes of a convection cell holds. This clearly indicates that 
the second-scale and third-scale cells are “suspended” near the top 
layer boundary. The flow near the bottom surface is not so diverse: 
there are only several isolated hot ascending plumes, which are 
relatively far apart.

The relative, advective-to-diffusive, efficiency of heat transport 
can be judged by the Péclet number,

Pe = V L

χ
; (6)

here, V is the characteristic velocity and L is the characteristic 
spatial scale of velocity variation in the directions normal to the 
velocity vector. To estimate the local Péclet number, we assume 
that

V = max{|vx|, |v y|, |vz|}
and estimate the velocity shear as

s = max

{∣∣∣∣∂vx

∂ y

∣∣∣∣ ,
∣∣∣∣∂vx

∂z

∣∣∣∣ ,
∣∣∣∣∂v y

∂x

∣∣∣∣ ,
∣∣∣∣∂v y

∂z

∣∣∣∣ ,
∣∣∣∣∂vz

∂x

∣∣∣∣ ,
∣∣∣∣∂vz

∂ y

∣∣∣∣
}

;

then

L ∼ V

s

and

Pe ∼ V 2

sχ
.

The partial derivatives can be calculated in a standard way, using 
their finite-difference analogues.

The height variations of 〈T 〉 and 〈Pe〉 (where the angle brackets 
designate averaging the local values over the horizontal section of 
the box) are plotted in Fig. 4. As can be seen, convective mixing 
at the chosen high Rayleigh number results in a relatively weak 
z-variation of temperature in the bulk of the layer; 〈Pe〉 acquires 
its largest values approaching the top boundary.
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Fig. 2. Flow pattern at time t = 170τν : (a)–(c) Vertical velocity component at z = 0.97, 0.323, 0.161, with variation ranges [−0.44, 0, 64], [−0.75, 0.60], [−0.80, 0, 49], 
respectively; (d), (f), (g) temperature field at the same levels with variation ranges [0.01, 0.99], [0.45, 0.99], [0.49, 1.00], respectively; (e) temperature distribution in the 
vertical section y = 5.11 marked in (a), (b) with horizontal lines (the z-scale is exaggerated with respect to the x-scale to show up the structure of the downdrafts).



O.V. Shcheritsa et al. / Physics Letters A 382 (2018) 639–645 643
Fig. 3. From left to right: an enlarged fragment of the temperature field at z = 0.97 and times t = 134.72, 136.35, 137.99 (measured in units of τν ). The largest, first-scale cells 
(outlined by downflow lanes, which appear dark grey) are divided by light-grey isthmuses into smaller, second-scale structures. The smallest, third-scale features manifest 
themselves most clearly in dark mottles near the first-scale intercellular lanes, especially at its nodes. The smallest features are advected by the flows inside the larger, 
first-scale and second-scale cells.

Fig. 4. Height variation of the temperature and Péclet number averaged over the horizontal plane.

Fig. 5. Processing of the temperature field at z = 0.97 (shown in Fig. 2d) with a Gaussian (moving-average) filter: (a) long-wavelength component, averaging result (a variation 
range of [0.15, 1.0]); (b) short-wavelength component obtained by subtracting the average from the original field (a variation range of [−1.2, 2.0]).
3.2. Smoothing the field and singling out the small-scale features

To single out different flow scales, we apply a standard Gaus-
sian moving-average filter to the temperature field. Fig. 5a shows 
the averaging (smoothing) result; Fig. 5b, the result of subtracting 
the average from the original flow pattern. The averaged, long-
wavelength component of the flow (Fig. 5a) is visually very similar 
to the original shown in Fig. 2d but differs from it by the small-
amplitude, short-wavelength component, Fig. 5b. The former is ba-
sically represented by the largest (first-scale) structures separated 
by dark lanes; however, the averaging procedure also reveals some 
“bridges”, or “isthmuses” (appearing slightly darker than the inte-
riors of the first-scale cell on the whole), which were noticeable 
even in the original flow map. These “bridges” reflect the presence 
of structures of an intermediate, second scale.



644 O.V. Shcheritsa et al. / Physics Letters A 382 (2018) 639–645
Fig. 6. (a) Spatial Fourier-amplitude spectrum of the temperature field at z = 0.97 (a variation range of [1, 1050]); (b) result of the processing of this temperature field with 
a band-pass filter (in physical space); (c) spectrum of the processed field (b) (a variation range of [0, 138]); (d) spectra of the original and the processed field (A and Af , 
respectively) averaged over all wavevectors with the same wavenumber k = |k|.
The smallest (third-scale) structures (Fig. 5b) are ubiquitous in 
the whole horizontal section. As noted above, the periphery of 
the large (primary) structures is formed by the strongest down-
drafts, which run through most part of the layer thickness, from 
top to deep levels; the downdrafts that permeate only a lesser 
part of the layer depth (Fig. 2e) are related to smaller-scale struc-
tures.

3.3. Spectral properties of the flow

Now, to comprehend how the flow spectrum reflects the pres-
ence of the three convection scales revealed in our simulations, 
we analyse the flow structure using spectral techniques. Fig. 6a 
represents the spatial spectrum of the original temperature field 
at z = 0.97 (Fig. 2d) in the form of a two-dimensional distribu-
tion of the Fourier amplitude versus the wavevector k = {kx, ky}, 
while Fig. 6d shows the k-variation of this amplitude averaged 
over all wavevectors k inside a narrow annular bin in the vicin-
ity of a given wavenumber |k| = k (we denote this average as A). 
In the (kx, ky) plane (Fig. 6a), there is a pronounced, slightly irreg-
ular spectral ring corresponding to the main peak of A(k) in the 
range 1.2 � k � 2.3 (Fig. 6d); it represents the large (first-scale) 
cells visually identifiable in both the velocity and the temperature 
field (Figs. 2a, 2d).
To detect the small-scale structures filling the entire domain, 
we apply a standard two-dimensional band-pass filter to the tem-
perature pattern at z = 0.97: in the filtered temperature field, 
its long-wavelength (0 � k � 3.5) and short-wavelength (k � 10) 
components prove to be removed. The resultant pattern (Fig. 6b) 
corresponds to the spectral remainder with wavenumbers in the 
range 3.5 � k � 10 (its averaged amplitude is designated as Af; see 
Figs. 6c, 6d) and testifies to the presence of smaller-scale struc-
tures. As can be seen from Fig. 6b, inside the large (primary, or 
first-scale) structures, there are ones of an intermediate (second) 
scale and of the smallest (third) scale. The smallest structures ap-
pear as light and dark mottles (which are, however, better distin-
guishable in Fig. 5b). They emerge inside the primary structures 
and are advected to their periphery by both the large-scale and 
intermediate-scale flows.

The flow has a continuous spectrum (Fig. 6d), which declines 
with the wavenumber k. While the bright ring in Fig. 6a and the 
main peak in Fig. 6d, corresponding to the first-scale structures, 
are pronounced, the spectral signatures of the second-scale and 
third-scale structures are smeared and cannot be separated with 
certainty. Tentatively, the long-wavelength part (k � 5) of the spec-
trum can be interpreted as a superposition of two peaks – the 
already mentioned main one and a minor one located in the range 
2.5 � k � 5.
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4. Summary and conclusion

We have analysed the structure of the velocity and tempera-
ture fields found in our simulations of convection in a plane layer 
of fluid with temperature-dependent thermal diffusivity. This de-
pendence is chosen so as to produce a sharp kink in the static 
temperature profile near the upper layer boundary. As a result, the 
magnitude of the (negative) static temperature gradient dTs/dz is 
small over the most part of the layer thickness but reaches large 
values in a thin sublayer near the upper boundary; at the same 
time, this gradient does not change its sign at any height, and 
the layer is everywhere convectively unstable. The random tem-
perature perturbation introduced in the strongly stratified sublayer 
initiates convective motions, which start developing near the up-
per boundary and then penetrate to progressively deeper layers.

After the initiation of convection, the flow gradually involves 
the whole layer depth, and the growing size of the largest struc-
tural elements of the velocity field (which we call primary, or 
first-scale, convection cells) settles down to a relatively steady 
characteristic value by t ≈ 65τν (a well-developed, quasi-steady 
multiscale convection pattern forms by t ≈ 80τν ). The primary 
cells have central upflows and peripheral downflows.

Except the first-scale structural elements, ones of two smaller 
scales can be detected in the flow. We have identified second-
scale structures, whose existence is evidenced by the presence of 
“bridges”, or “isthmuses”, intersecting the first-scale cells and the 
smallest, third-scale structures, which are advected by the first-
scale and second-scale convective flows. While the vertical size of 
the primary cells corresponds to the whole layer thickness, smaller 
structures are localised near the upper boundary. The cold down-
drafts at the borders of the differently scaled cells penetrate to 
different depths. The smaller the size of the cells, the shallower 
level their downdrafts pierce. The vertical and the horizontal size 
are similar for each type of structures, as is typically observed in 
various known convective flows. The second-scale and third-scale 
structures are “suspended” near the upper layer boundary.

The simulated flow is a hierarchical superposition of cellular 
convection structures of three widely different characteristic sizes. 
This pattern bears remarkable visual similarities with the pattern 
of solar convection, which (apart from the existence of giant cells 
and elusive mini-granules) is a superposition of three cell sorts, 
viz., supergranules, mesogranules and granules.

It is worth noting that the spatial spectrum of the flow does 
not directly indicate the presence of the third-scale structures, and 
one also cannot reveal with certainty spectral manifestations of 
the second-scale structures. In this respect, the situation resembles 
that in the case of solar convection: as we know, neither meso-
granular nor mini-granular scale can be identified in the power 
spectra of the velocity field.

We have thus shown, in the framework of a fairly simple model, 
that temperature variation of the thermal diffusivity of the fluid 
can give rise to a scale-splitting effect. This appears to be a non-
trivial feature of the hydrodynamics of thermal convection. We did 
not pursue the aim of reaching a close similarity between the con-
ditions in our model and in the solar convection zone, since the 
structure of solar convection cannot be accurately reproduced in 
a layer of an incompressible fluid. However, there are reasons to 
believe that the detected physical effect of scale splitting due to 
variations in the thermal diffusivity may have something in com-
mon with the structure-forming mechanisms acting in the solar 
convective flows. Hopefully, further improvements of the model 
would make this resemblance more complete. We plan such at-
tempts for the near future.
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