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Can cellular convection in a rotating spherical shell
maintain both global and local magnetic fields?

A. V. Getling,1 R. D. Simitev,2,3 and F. H. Busse4

Received 20 December 2005; accepted 24 October 2006; published 31 March 2007.

[1] A convection-driven MHD dynamo in a rotating spherical shell, with clearly defined
structural elements in the flow and magnetic field, is simulated numerically. Such dynamos
can be called deterministic, in contrast to those explicitly dependent on the assumed
properties of turbulence. The cases most interesting from the standpoint of studying the
nature of stellar magnetism demonstrate the following features. On a global scale, the
convective flows can maintain a “general” magnetic field with a sign-alternating dipolar
component. Local (in many cases, bipolar) magnetic structures are associated with
convection cells. Disintegrating local structures change into background fields, which drift
toward the poles. From time to time, reversals of the magnetic fields in the polar regions
occur, as “new” background fields expel the “old” fields. INDEX TERMS: 7524 Solar Physics,

Astrophysics, and Astronomy: Magnetic fields; 7537 Solar Physics, Astrophysics, and Astronomy: Solar and

stellar variability; 7599 Solar Physics, Astrophysics, and Astronomy: General or miscellaneous; KEYWORDS:

Convection; MHD dynamo; Global and local magnetic fields.
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1. Introduction

[2] The original motivation of this study was suggested by
the problems of solar physics. Although the results obtained
at this stage cannot be interpreted to represent the specifi-
cally solar dynamo process, we should give a brief exposition
of the previous investigation that led us to the formulation
of the problem considered here.

[3] Observations of the solar magnetic fields reveal a bewil-
dering variety of structures and activities. It is remarkable
that solar processes vary in scale from sizes comparable to
the solar radius to the limit of present resolution and in du-
ration from tens of years to minutes [see, e.g., Schrijver and
Zwaan, 2000].

[4] Mean-field electrodynamics [Krause and Rädler, 1980;
Moffatt, 1978] has clarified many issues concerning the gen-
eration of the global magnetic fields of cosmic bodies. How-
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ever, such problems as the formation of local magnetic fields
and their relationship to the global fields fall completely be-
yond the scope of mean-field theories. Meanwhile, the phe-
nomenon of solar and stellar magnetism could be adequately
understood only if the dynamics of the interplay between
structures in the velocity field and magnetic field is compre-
hensively studied over a wide range of spatial scales. Dy-
namo models that are aimed at a unified description of the
global and local processes and that deal with local, instan-
taneous quantities rather than averaged ones can naturally
be referred to as “deterministic” models. They describe the
structural elements present in the flow and in the magnetic
field instead of considering the averaged parameters of the
turbulent flow (in particular, the statistical predominance of
one sign of the velocity field helicity or another).

[5] The idea that convection cells in the solar subphoto-
spheric zone could be a connecting link between global and
local magnetic fields traces back to the mid-1960s. Tverskoy
[1966] represented the convection cell by a toroidal eddy and
demonstrated, in the framework of a kinematic approach,
that such a model convection cell can amplify the magnetic
field and produce characteristic bipolar magnetic configura-
tions. This approach was also used by Getling and Tverskoy
[1971a, 1971b] to construct a kinematic model of the global
dynamo in which toroidal eddies distributed over a spheri-
cal shell, acting jointly with the differential rotation of the
shell, maintain a sign-alternating global magnetic field. If
a poloidal magnetic field is present, the differential rotation
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Figure 1. Geometrical configuration of the problem. The
two spherical surfaces with radii ri and ro are dark shaded.
A part of the outer surface is removed to expose the inte-
rior of the shell (light shaded) where the conducting fluid is
confined.

produces a toroidal component of the global magnetic field.
[6] If the local magnetic configuration produced by an

eddy interacting with the large-scale toroidal field is rotated
through some angle about the axis of the eddy, this config-
uration contributes to the regeneration of the poloidal com-
ponent of the global magnetic field.

[7] Thus a cell locally interacting with the magnetic field
serves in this model as a building block of the global dy-
namo, and the latter can in this case be called the “cellular”
dynamo. The rotation of the local magnetic field pattern
can be expected if the system rotates as a whole and the
flow is affected by the Coriolis force.

[8] In recent years, after the advent of suitable computing
facilities, some steps have been made to verify these ideas by
means of numerical simulation. Getling [2001] and Getling
and Ovchinnikov [2002] obtained numerical solutions to the
three-dimensional nonlinear problem of magnetoconvection
in a plane horizontal layer of incompressible fluid, heated
from below, and found that hexagonal convection cells in-
teracting with a weak initial (“seed”), horizontal magnetic
field can produce various structures of the strongly ampli-
fied magnetic field, with a predominant bipolar component.
Dobler and Getling [2004] extended this numerical analysis
to compressible fluids and obtained similar results.

[9] Modern computing resources make it possible to ap-
proach the development of numerical cellular-dynamo mod-
els that could provide a parallel description of both the
global and local magnetic fields. However, even today, nu-

merical schemes can hardly be used to simulate flows and
magnetic fields over scale ranges covering two or more or-
ders of magnitude. Only the largest convection cells, of sizes
comparable to the depth of the convection zone (such as solar
“giant” cells, for which little observational evidence exists),
can be simulated in the framework of global models. If we
assume that the principal features of the process should be
similar for convection on different scales, such global models
would help us to verify our qualitative notion and provide
guidelines for the elaboration of a more detailed description.

[10] Here, we use numerical simulations to investigate the
properties of cellular dynamos in rotating spherical shells,
which could operate in stars under certain conditions. Al-
though there are reasons to believe that the solar dynamo
is also of a cellular type, we do not directly associate the
presently obtained results with solar processes, since the
computed patterns of magnetic-filed evolution bear only lim-
ited similarity to the pattern observed on the Sun. We
merely note some remarkable features of the cellular dy-
namos, which may be of interest from the standpoint of
stellar magnetohydrodynamics.

2. Formulation of the Problem and
Numerical Technique

[11] In order to model the process of magnetic field gen-
eration in a stellar convection zone, we consider a spherical
shell of thickness d = ro − ri (where ro and ri are the outer
and inner radii of the shell), full of electrically conducting
fluid and rotating with a constant angular velocity Ω about
a fixed axis êz, as shown in Figure 1.

[12] We follow the standard formulation used in earlier
work by Tilgner and Busse [1997], Busse et al. [1998], Grote
et al. [1999, 2000], Busse [2002], and Simitev and Busse
[2002, 2005], but we assume a more general form of the static
temperature distribution,

TS = T0 −
β

2
d 2r2 +

β1

d

1

r

β =
q

3χcp

β1 =
ηd∆T

(1− η)2
(1)

where the radial coordinate r is measured in units of d, χ
is the thermal diffusivity, cp is the specific heat at constant
pressure, q is the mass density of uniformly distributed heat
sources, η ≡ ri/ro is the inner-to-outer radius ratio of the
shell, and T0 is a constant. The quantity ∆T is related
to the difference between the constant temperatures of the
inner and outer spherical boundaries, Ti and To, as

∆T = Ti − To −
1

2
βd 2 1 + η

1− η
(2)

and reduces to Ti − To in the case of q = 0 (also dealt with
in some simulations). The shell is self-gravitating, and the
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gravitational acceleration averaged over a spherical surface
r = const can be written as g = −(γd)r, where r is the
position vector with respect to the center of the sphere; as
specified above, its length r is measured in units of d. In ad-
dition to d, the time d2/ν, the temperature ν2/γαd4 (where
α is the volumetric coefficient of thermal expansion), and
the magnetic induction ν(µρ)1/2/d are used as scales for the
dimensionless description of the problem; here, ν denotes
the kinematic viscosity of the fluid, ρ is its density, and µ is
its magnetic permeability (we set µ = 1).

[13] We use the Boussinesq approximation in that we as-
sume ρ to be constant except in the gravity term, where, in
addition to the standard linear dependence ρ(T ) (according
to which ρ−1(dρ/dT ) = −α = const), we introduce a small
quadratic term in most cases. Once a cellular pattern has
developed, the presence of this term and of the volumetric
heat sources should not radically modify the properties of
the dynamo; however, both these factors favor the devel-
opment of polygonal convection cells [Busse, 2004] similar
to the cells observed on the Sun, rather than meridionally
stretched, banana-like convection rolls. Without these es-
sential modifications, polygonal cells could only be obtained
at much smaller rotational velocities; in this case, the pro-
cess would develop very slowly, and the computations would
be extremely time consuming.

[14] Thus the equations of motion for the velocity vector
u, the heat equation for the deviation Θ from the static
temperature distribution, and the equation of induction for
the magnetic field B are

∇ · u = 0 (3a)

(∂t + u · ∇)u = −∇π + τu× êz + (Θ + ε Θ2)r+

∇2u + (∇×B)×B (3b)

P (∂t + u · ∇)Θ =

∇2Θ +

(
ri + Re

η

(1− η)2
1

r3

)
r · u (3c)

∇ ·B = 0 (3d)

∂tB = ∇× (u×B) + P−1
m ∇2B (3e)

where π is an effective pressure.
[15] Six nondimensional physical parameters of the prob-

lem appear in our formulation. The Rayleigh numbers mea-
sure the energy input into the system,

Ri =
αγβd6

νχ

(4)

Re =
αγ∆Td4

νχ

and are associated with the internally distributed heat sour-
ces q and the externally specified temperature difference Ti−
To (see equation (2)), respectively. The Coriolis number τ ,
the Prandtl number P , and the magnetic Prandtl number
Pm describe ratios between various timescales in the system,

τ =
2Ωd 2

ν
P =

ν

χ
Pm =

ν

νm
(5)

(νm is the magnetic viscosity, or magnetic diffusivity). Fi-
nally, ε is the small constant that specifies the magnitude of
the quadratic term in the temperature dependence of density
(see equation (3b)).

[16] Since the velocity field u and the magnetic induc-
tion B are solenoidal vector fields, the general representation
in terms of poloidal and toroidal components can be used,

u = ∇× (∇v × r) +∇w × r (6a)

B = ∇× (∇h× r) +∇g × r (6b)

By taking the (curl)2 and the curl of the Navier–Stokes equa-
tion (3b) in the rotating system by r, we obtain two equa-
tions for v and w,

[(∇2 − ∂t)L2 + τ∂ϕ]∇2v + τQw − L2(Θ + ε Θ2) =

−r · ∇ × [∇× (u · ∇u−B · ∇B)] (7a)

[(∇2 − ∂t)L2 + τ∂ϕ]w − τQv =

r · ∇ × (u · ∇u−B · ∇B) (7b)

where ϕ denotes the azimuthal angle (“longitude”) in the
spherical system of coordinates r, θ, ϕ, and the operators L2

and Q are defined by

L2 ≡ −r2∇2 + ∂r(r
2∂r)

Q ≡ r cos θ∇2 − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ)

The heat equation (3b) can be rewritten in the form

∇2Θ +
[
ri + Reηr−3(1− η)−2

]
L2v =

P (∂t + u · ∇)Θ (8)

Equations for h and g can be obtained multiplying the equa-
tion of magnetic induction (3e) and its curl by r,

∇2L2h = Pm[∂tL2h− r · ∇ × (u×B)] (9a)

∇2L2g = Pm[∂tL2g − r · ∇ ×(∇×(u×B))] (9b)
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Figure 2. Static profiles of the temperature and tempera-
ture gradient in the case of internal heating.

[17] We assume stress-free boundaries with fixed temper-
atures,

v = ∂2
rrv = ∂r(w/r) = Θ = 0 at r = ri and r = ro (10)

For the magnetic field, we use electrically insulating bound-
aries such that the poloidal function h must be matched to
the function h(e) that describes the potential fields outside
the fluid shell

g = h− h(e) = ∂r(h− h(e)) = 0 at r = ri and r = ro (11)

[18] The numerical integration of equations (7)–(11) pro-
ceeds with a pseudospectral method developed by Tilgner
and Busse [1997] and Tilgner [1999], which is based on an
expansion of all dependent variables in spherical harmonics
for the θ and ϕ dependences; in particular, for the magnetic
scalars,

g =
1

r

∞∑
l=0

l∑
m=−l

Gm
l (r, t)P m

l (θ) exp{imϕ} (12a)

h =
1

r

∞∑
l=0

l∑
m=−l

Hm
l (r, t)P m

l (θ) exp{imϕ} (12b)

(with truncating the series at an appropriate maximum l),
where P m

l denotes the associated Legendre functions. For
the r dependences, truncated expansions in Chebyshev poly-
nomials are used. The equations are time stepped by
treating all nonlinear terms explicitly with a second-order
Adams–Bashforth scheme whereas all linear terms are in-
cluded in an implicit Crank–Nicolson step.

[19] For the computations to be reported here, a minimum
of 33 collocation points in the radial direction and spheri-
cal harmonics up to the order 96 have been used. In addi-
tion to the geometric parameter η and the above mentioned
physical parameters, we specified a computational param-
eter, namely, the fundamental (lowest nonzero) azimuthal

number m0. Thus only the following azimuthal harmonics
were really considered:

1, e±im0ϕ, e±2im0ϕ, e±3im0ϕ . . .

In other words, we imposed an m0-fold symmetry in the ϕ
direction. If m0 6= 1, this reduces the computation time.

3. Results

3.1. Internal Heating

[20] For the cases of internal heating, we varied Pm and
assumed η = 0.6, Ri = 3000, Re = −6000, τ = 10, P = 1,
and m0 = 5. As can be seen from checking computations
with m0 = 1 (not presented here), removing the artifi-
cially imposed fivefold azimuthal symmetry does not sub-
stantially modify the character of the convection pattern.
The quadratic term was present in the temperature depen-
dence of density, with a control parameter of ε = 0.005.

[21] The distributions of the temperature TS(r) and its
gradient dTS/dr for the corresponding static-equilibrium
state are shown in Figure 2. Obviously, the outer part of
the shell is convectively unstable and the inner part is sta-
ble.

[22] 3.1.1. Case of Pm = 30. At this Pm value, the
computations covered a time interval of about 100 in units
of the time of thermal diffusion across the shell. Over most
part of this period, a very stable pattern of convection cells
with a dodecahedral symmetry can be observed (Figure 3,
top). These cells have a normal appearance typical of cel-
lular convection, without substantial distortions due to the
rotation of the shell. The entire pattern drifts in the ret-
rograde direction, in agreement with theoretical predictions
[Busse, 2004].

[23] The axisymmetric component of the azimuthal ve-
locity (Figure 4) in a well-established flow pattern is nearly
symmetric with respect to the equatorial plane. Specifically,
a prograde rotation of the equatorial zone (in the frame of
reference rotating together with the entire body) is present
along with a retrograde rotation of the midlatitudes, and
pairs of “secondary” prograde- and retrograde-rotation zones
can also be noted in the polar regions. In a nonrotating
frame of reference, the equatorial zone rotates more rapidly
and the midlatitudinal zones more slowly than the shell as
a whole does. Three pairs of meridional-circulation vortices
fill the entire meridional section of the shell, from one pole
to another.

[24] The pattern of magnetic field is less regular than the
pattern of flow (Figure 3, middle and bottom). Some re-
markable features or the simulated dynamo process can be
summarized as follows.

[25] First, local magnetic structures associated with con-
vection cells emerge repeatedly as compact magnetic regions
(see Figure 3). In their subsequent evolution, these regions
change their configuration and finally dissipate into much
weaker remnant fields.
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Figure 3. Contours of the radial velocity component on the sphere r = ri + 0.5 at t = 98.73 (top) and
of the radial component of the magnetic field on the sphere r = ro at t = 98.73 (middle) and 101.73
(bottom) in the case of internal heating at η = 0.6, Ri = 3000, Re = −6000, τ = 10, P = 1, Pm = 30,
and m0 = 5. Solid curves: positive values; dotted curves: zero values; dashed curves: negative values.
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Figure 4. Contours of the axisymmetric azimuthal velocity
(left-hand section) and streamlines of the meridional circula-
tion, or contours of the stream function of the axisymmetric
meridional flow (right-hand section) in the same case with
internal heating (Pm = 30) at t = 98.73. The curves have
the same meaning as in Figure 3.

[26] Second, the dipolar component of the global magnetic
field exhibits polarity reversals (see Figure 5 for a graph
of the amplitude of the dipole component, H0

1 (t); wherever
the r variable as an argument of H0

1 is omitted, we mean
H0

1 (ri + 0.5, t)). The background fields, remnants of the
decaying local magnetic structures, drift toward the poles
and “expel” the “old” background fields present in the polar
regions. As a result, the old magnetic polarity is replaced
with the new one due to the poleward drift of the latter.
The polarity reversals of the global magnetic field can also
be seen from the variation in the amplitude of the dipolar
harmonic of the poloidal field, H0

1 (t) (Figure 5). The two
maps of the magnetic field shown in Figure 3 correspond
to two situations in which the global magnetic dipole has
opposite orientations (the polarity reversal between these
two times corresponds to the rightmost intersection of the
curve in Figure 5 with the horizontal zero line).

[27] Third, an interesting intermittent behavior is exhib-
ited by the magnetic energy of the system. Let us compare
the full energy and two particular fractions of the energy
associated with the magnetic field component that has a
dipolar-type symmetry (i.e., is antisymmetric with respect
to the equatorial plane). Specifically, we are interested in
the behavior of the energy of the axisymmetric and the non-
axisymmetric part of this component. The axisymmetric
part is represented by the spherical harmonics with l odd
and m = 0 (see (12)), and the nonaxisymmetric part by
other harmonics with l + m odd. As can be seen from Fig-

ure 6 (in which the total energy and its particular fractions
are divided by the volume of the shell), the main peaks in
the graph of the total energy are alternately associated with
increases in the energies of the axisymmetric and the nonax-
isymmetric part of the component with a dipolar symmetry.
In particular, the peak located near t = 42 is fed by the
symmetric field; near t = 55, by the asymmetric field; near
t = 68, by both but with some predominance of the sym-
metric part; and near t = 78, again by the asymmetric part.

[28] 3.1.2. Same case of Pm = 30 but with spe-
cial initial conditions. In our attempts to find conditions
for the realization of magnetic field dynamics similar to the
generally imagined pattern of a hypothetical dynamo pro-
cess with differential rotation as its essential part (known
since the qualitative model suggested by Babcock [1961] and
Leighton [1964, 1969]), we made an additional computational
run. We specified all parameters to be the same as in the
case described above. However, the initial conditions were
chosen in such a way that, initially, the system would more
likely find itself within the attraction basin of the expected
dynamo regime in state space. To this end, we superposed
the nonaxisymmetric components of the velocity field and
magnetic field obtained in the above described run onto a
pattern of differential rotation with the equatorial belt ac-
celerated compared to higher latitudes and with an appro-
priate distribution of the axisymmetric azimuthal magnetic
field that has different signs on the two sides of the equator.

[29] The computations have demonstrated that the sys-
tem nevertheless approaches virtually the same regime that
was observed without using such special initial conditions.
Thus a closer similarity between the numerical solution and
the properties of the hypothetical dynamos of the Babcock–
Leighton type does not seem to be achievable in the frame-
work of this very simple model.

[30] 3.1.3. Case of Pm = 200. As the magnetic
Prandtl number Pm is varied (under otherwise fixed condi-
tions), the convection pattern varies little over a fairly wide
Pm range. However, the greater this parameter, the higher
the mean strength of the magnetic field (and, accordingly,
the total magnetic energy). The kinetic energy of convection
decreases with the increase of Pm and convection becomes
more sensitive to time variations in the magnetic field. The

Figure 5. Variation in the amplitude of the dipolar har-
monic of the poloidal magnetic field, H0

1 (r, t), at r = ri +0.5
in the same case with internal heating (Pm = 30).
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Figure 6. Density of magnetic energy and its particular fractions in the same case with internal heating
(Pm = 30). Solid (heavy black) curve and right-hand vertical scale: total density of the magnetic energy;
dashed curve and left-hand vertical scale: energy density associated with the axisymmetric part of the
magnetic field component that has a dipole symmetry; dotted curve and left-hand scale: energy density
associated with the nonaxisymmetric part of the same magnetic field component.

increase of Pm is also manifest in the fact that local magnetic
fields become more patchy and less ordered. Individual ar-
eas filled with the magnetic field of a given sign are smaller
in size and more numerous, and bipolar structures are not
so well pronounced (see Figure 7, which refers to Pm = 200).
As in the case of Pm = 30, we can observe the penetration
of background fields into the polar regions and sign reversals
of the polar background fields.

[31] Our computations for Pm = 200 cover a time inter-
val almost five times as long as for Pm = 30 (Figure 8).
The two velocity maps and two magnetic field maps shown

Figure 7. Contours of the radial component of the velocity on the sphere r = ri + 0.5 (left) and of the
magnetic field on the sphere r = ro (right) at t = 200 (top) and t = 327.2 (bottom) in the case of internal
heating at Pm = 200, while the other parameters are as in the preceding case: η = 0.6, Ri = 3000,
Re = −6000, τ = 10, P = 1, and m0 = 5. The curves have the same meaning as in Figure 3.

in Figure 7 nearly correspond to the times of one negative
and one positive extremum of the amplitude H0

1 (t) (see Fig-
ure 8). It is remarkable that the polar background fields
have different polarities at these two times. At t = 200.0,
the background magnetic field is negative in the “northern”
and positive in the “southern” polar region; an opposite sit-
uation takes place at t = 327.2. The H0

1 (t) curve demon-
strates numerous sign reversals, although fine details of this
dependence only reflect the irregular, fluctuational aspect of
the process. It is nevertheless clear that, even if we smooth
this curve, it will exhibit quite pronounced cyclic, although
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Figure 8. Variation in amplitude of the dipolar harmonic of the poloidal magnetic field, H0
1 (r, t), at

r = ri + 0.5 for the same case with internal heating as illustrated by Figure 7 (Pm = 200).

nonperiodic, polarity reversals of the dipolar component of
the “general” magnetic field.

[32] It should be noted that the distribution of the axisym-
metric component of the azimuthal velocity (the pattern of
differential rotation, not shown here) in this case is much
more complex and variable than at Pm = 30. This effect
also can be due to the stronger influence of the magnetic
field on the fluid motion.

[33] 3.1.4. Internal heating without a Θ2 term
(nonmagnetic case). To form an idea of the role played
by the quadratic term in the ρ(T ) dependence, we computed
a purely hydrodynamic (with B = 0) scenario under condi-
tions that differed from the conditions of the above described
simulation by the absence of the Θ2 term (ε = 0) and by the
Coriolis number (τ = 1); in addition, we assumed m0 = 1 in
this case.

[34] The principal result of these computations is the find-
ing that, in the absence of the quadratic term, convection
unaffected by the magnetic field forms patterns of well-
localized, three-dimensional cells, which typically appear as
shown in Figure 9. A downwelling is observed in the cen-
ter of each cell, in contrast to the above described cases, in
which central upwellings typically developed. The issue of
the direction of circulation in a convection cell is a fairly
subtle matter (see, e.g., Getling [1998] for a survey of some
situations related to convection in horizontal layers), so that
agreement or disagreement between our model and any re-
ally observed pattern can in no way be an indication for
the factors responsible for the observed direction of convec-
tive motions. Our primary interest in the cases where an
upwelling is present in the central part of a cell is merely
dictated by our intention of constructing a dynamo model
reproducing the solar phenomena as closely as possible.

3.2. Heating “From Outside” (Through the Inner
Surface)

[35] In addition, we undertook a search for regimes in
which convection preserves its “three-dimensional” structure
in the absence of internal heat sources. In other words, some
computations were done at Ri = 0. The quadratic term was
also missing from the temperature dependence of density
(ε = 0) in these runs.

[36] Note that, in the limiting case of a nonrotating shell,
convection cells are not stretched in any direction. There-
fore, a cellular pattern of convective motion can obviously be
maintained even without such favorable factors as a specific
form of stratification and a quadratic term, but at smaller
rotational velocities.

[37] In shells without internal heat sources (q = 0), con-
vection regimes similar to those observed at q 6= 0 should be
expected, under otherwise identical conditions, at smaller η.
This is because a stratification similar to that shown in Fig-
ure 2 confines the development of convective motion to the
outer part of the shell.

[38] We illustrate here the case of q = 0 only by a ten-
tative computational run for convection without a magnetic
field, at η = 0.9, P = 1, τ = 0.1, Re = 5000, and m0 = 2
(see Figure 10 for a velocity field typical of this case). Al-
though the convection pattern is complex in this case, a ten-
dency toward the formation of meridionally elongated cells
can nevertheless be noted.

[39] Computations with the magnetic field included (e.g.,
for η = 0.8, P = 1, Re = 5000, τ = 0.1, Pm = 5) demon-
strate the development of magnetic features with a very
small spatial scale, close to the resolution limit of the compu-
tational scheme. This is a signature for an insufficient spatial
resolution, so that the simulation results are not quite reli-
able.

Figure 9. Contours of radial velocity on the surface r =
ri+0.5 in the nonmagnetic case with internal heating, τ = 1.
No quadratic term is present in the ρ(T ) dependence (ε = 0).
The other parameters are η = 0.6, Ri = 3000, Re = −6000,
P = 1 (as in the preceding cases), and m0 = 1. The curves
have the same meaning as in Figure 3.
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Figure 10. Map of the radial velocity component on the sphere r = ri + 0.5 in the nonmagnetic case
with heating through the inner boundary at η = 0.9, P = 1, τ = 0.1, Re = 5000, and m0 = 2. The
contours merge into hatching: moderately light for positive values, light for zero values, and dark for
negative values.

[40] The qualitative aspects of the results suggest that
the Coriolis number proves again to be insufficiently small
for the stability of “three-dimensional” convection cells, and
the cells ultimately become substantially stretched, although
not in a strictly meridional direction.

[41] On the whole, the last two scenarios of flow and
magnetic field evolution indicate that regimes of “cellular”
dynamo in a shell without internal heating and without a
quadratic term in the ρ(T ) dependence should be sought in
the range of smaller Ω (and τ).

4. Conclusion

[42] We have constructed relatively simple numerical mod-
els that describe a self-sustained process of generation of in-
teracting global and local magnetic fields. As in most hypo-
thetical astrophysical dynamos, the generation is driven by
thermal convection in combination with differential rotation.
We did not introduce any kinematic elements in our model,
so that the entire velocity field appeared as the solution of
the full system of MHD equations.

[43] The most remarkable features revealed in the com-
puted dynamo regimes can be summarized as follows. The
process of magnetic field generation is cyclic, although rather
irregular. It includes the repeated generation of local, in
many cases bipolar, magnetic structures. These structures
dissipate giving rise to chaotic background fields. They may
drift in the poleward direction, replacing the already exist-

ing, “old” background fields. In some cases, a correspon-
dence can be noted between such polarity reversals in the
polar regions and sign reversals of the axisymmetric bipolar
component of the global magnetic field.

[44] One of the computed scenarios demonstrates a re-
markable intermittency in the behavior of some fractions of
magnetic energy: the axisymmetric and the nonaxisymmet-
ric part of the magnetic field component with a dipolar sym-
metry alternate in making larger contributions to the total
energy peaks.

[45] Mean-field dynamo models, which have been most
popular in astrophysics over a few past decades, attribute
the generation of the global magnetic fields of stars to the α
effect, the statistical predominance of one sign of the veloc-
ity field helicity over another. It is quite plausible that the
α effect, in one form or another, is a fairly general property
of various velocity fields capable of maintaining undamped
regular magnetic fields. However, this property must not
necessarily be associated with turbulent motion. In partic-
ular, the model velocity field in the toroidal eddies used by
Getling and Tverskoy [1971a, 1971b] to construct a global
dynamo included an azimuthal (with respect to the axis of
the eddy) velocity component, so that the trajectories of the
fluid particles were spirals deformed in a certain way. A
similar property may also be inherent in the convective flow
that develops in our model, although checking this possibil-
ity requires a special investigation.

[46] At this stage, the “deterministic” cellular dynamo de-
scribed here is oversimplified to be regarded as a model of
the solar or any other specific stellar dynamo. However, it
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demonstrates that the dynamics of the well-structured lo-
cal magnetic fields and of the global magnetic field may be
ingredients of one complex process.
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